Round-off Error and the Floor Function

Pat Thompson

Why does this happen?

GC's computation of
$$\left\lfloor \frac{2.72}{0.01} \right\rfloor$$
 is 272 (which is correct).
GC's computation of $\left\lfloor \frac{4.72-2}{0.01} \right\rfloor$ is 271 (which is incorrect).

The explanation has to do with the fact that computers have a finite number of digits with which to represent all real numbers, and it represents all numbers in base 2. So any number that is not a sum of powers of 2 is actually approximated in the computer's memory.

0.01 (base ten) is represented in the computer as:

2.72 (base ten) in the computer is represented in the computer as:

2.72000000000000195399252334027551114559173583984375 (base ten).

So, 2.72 in the computer is a little *more* than 2.72.

4.72 (base ten) in the computer is

4.719999999999975131004248396493494510650634765625 (base ten).

So, 4.72 in the computer is a little *less* than 4.72.

Therefore, 4.72 - 2 is actually represented in the computer as:

4.719999...25 - 2, or 2.719999...25 (base ten), while 2.72 in the computer is represented as 2.720000000...75 (base ten).

The computer's computation of
$$\left\lfloor \frac{4.72 - 2}{0.01} \right\rfloor$$
 will be $\left\lfloor \frac{2.719999...25}{0.0100...11} \right\rfloor = 271$.

The computer's computation of
$$\left| \frac{2.72}{0.01} \right|$$
 will be $\left| \frac{2.72000...75}{0.0100...11} \right| = 272$.

The computer is not broken. It just doesn't have enough digits to represent all real numbers exactly.