
Round-off Error and the Floor Function
Pat Thompson

Why does this happen?

GC’s computation of

2.72
0.01

⎢

⎣⎢
⎥

⎦⎥
 is 272 (which is correct).

GC’s computation of

4.72− 2
0.01

⎢

⎣⎢
⎥

⎦⎥
 is 271 (which is incorrect).

The explanation has to do with the fact that computers have a finite number of digits with which
to represent all real numbers, and it represents all numbers in base 2. So any number that is not a
sum of powers of 2 is actually approximated in the computer’s memory.

0.01 (base ten) is represented in the computer as:

0.00000010100011110101110000101000111101011100001010001111011 (base two)

which, in base ten, is actually
0.01000000000000000020816681711721685132943093776702880859375 (base ten).

So, 0.01 in the computer is a little more than 0.01.

2.72 (base ten) in the computer is represented in the computer as:

10.101110000101000111101011100001010001111010111000011 (base two)

which, in base ten, is actually
2.720000000000000195399252334027551114559173583984375 (base ten).

So, 2.72 in the computer is a little more than 2.72.

4.72 (base ten) in the computer is

100.10111000010100011110101110000101000111101011100001 (base two)

which, in base ten, is actually
4.71999999999999975131004248396493494510650634765625 (base ten).

So, 4.72 in the computer is a little less than 4.72.

Therefore, 4.72 - 2 is actually represented in the computer as:

4.719999…25 – 2, or 2.719999…25 (base ten), while 2.72 in the computer is represented as
2.720000000…75 (base ten).

The computer's computation of

4.72− 2
0.01

⎢

⎣⎢
⎥

⎦⎥
will be

2.719999...25
0.0100...11

⎢

⎣⎢
⎥

⎦⎥
= 271 .

The computer's computation of

2.72
0.01

⎢

⎣⎢
⎥

⎦⎥
will be

2.72000...75
0.0100...11

⎢

⎣⎢
⎥

⎦⎥
= 272 .

The computer is not broken. It just doesn’t have enough digits to represent all real numbers
exactly.

