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9.2. Undoing the Chain Rule 
 
This chapter focuses on finding accumulation functions in closed form when we know its rate of 
change function.  We’ve seen that 1) an accumulation function in closed form is advantageous 
for quickly and easily generating many values of the accumulating quantity, and 2) the key to 
finding accumulation functions in closed form is the Fundamental Theorem of Calculus. The 
FTC says that an accumulation function is the antiderivative of the given rate of change function 
(because rate of change is the derivative of accumulation). 
 
In Chapter 6, we developed many derivative rules for quickly finding closed form rate of change 
functions from closed form accumulation functions.  We also made a connection between the 
form of a rate of change function and the form of the accumulation function from which it was 
derived. 
 
Rather than inventing a whole new set of techniques for finding antiderivatives, our mindset as 
much as possible will be to use our derivatives rules in reverse to find antiderivatives.  We 
worked hard to develop the derivative rules, so let’s keep using them to find antiderivatives!     
 
Thus, whenever you have a rate of change function f and are charged with finding its 
antiderivative, you should frame the task with the question “What function has f as its 
derivative?” 
 
For simple rate of change functions, this is easy, as long as you know your derivative rules well 
enough to apply them in reverse.   For example, given a rate of change function …. 
 
… 2x, what function has 2x as its derivative?  i.e. if f '(x) = 2x  , then f (x) = x2   (plus any 
constant) 
 
… –sin x, what function has –sin x as its derivative?  cos x  + C 
 
… ex, what function has ex as its derivative?  ex  + C 
 
Several more examples like these were given in 9.1 exercise 2? 3? .  It would be a good idea to 
review those now for practice before continuing on. 
 
 
 
 
Unfortunately, Not All Antiderivatives Are Easy…. 
 
In that list from exercise 2/3 were some slightly harder examples similar to this:   
 

http://patthompson.net/ThompsonCalc/section_9_1.html
http://patthompson.net/ThompsonCalc
http://patthompson.net/ThompsonCalc/section_9_3.pdf


<	Previous	Section	 Home	 Next	Section	>	

What’s the principal antiderivative of the rate of change function 3x2ex
3

?  Again, 
to tackle this, ask the question “What function f, if I took the derivative of it, 

would yield f '(x) = 3x2ex
3

? ” 
 

Since f '  is the product of two functions, you might conjecture that f (x) = x3ex
3

, reasoning that 
the antiderivative of f '  is the product of antiderivatives.  But checking this answer by taking its 
derivative, which requires the product rule, yields a sum that is entirely different than the 
function f '  given.   
 

If , then . 
 
The conjecture is incorrect. 

Someone with a strong knowledge of the derivative rules can recognize that 3x2ex
3

is a derivative 
found by using the chain rule, since 3x2 is the derivative of x3, the argument of the composite 

function ex
3

.   So, what function, if the chain rule is applied, yields 3x2ex
3

?  The answer is ex
3

.  

Finding the derivative of ex
3

with the chain rule verifies that it is indeed the antiderivative of 

3x2ex
3

. 
 
This section focuses on determining antiderivatives similar to this example.  This way of 
thinking is developed below and is called Undoing the Chain Rule. 
 
 
 
 
Undoing the Chain Rule 
 
The chain rule is for determining derivatives of composite functions; a composite function has 
the form h(x) = g( f (x)) .  Recall the chain rule is… 
 
rh(x) = rg ( f (x))rf (x)      or     h '(x) = g '( f (x)) f '(x)   

 
We can summarize the process symbolically as shown below. 
 
 
CHAIN RULE:          

g( f (x))       →
Derivative

       g '( f (x)) f '(x)  
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Thus, undoing the chain rule means first recognizing when a rate of change function has the 
structure g '( f (x)) f '(x) , and then determining the antiderivative by “recovering” the original 
function g( f (x)) , as shown below. 
 
 
UNDOING THE CHAIN RULE:    
 

g '( f (x)) f '(x) →
Anti−Derivative

     g( f (x))            
 
 
 
 
 
The Role of Constant Factors & Coefficients 
 
Here is the idea and pattern of Undoing the Chain Rule applied to the example above: 
 

3x2ex
3
 →
Anti−Derivative

     ex
3
           

 
 
This works because 3x2 is the derivative of x3, according to the result of applying the chain rule 

to ex
3

 .     
 

Notice that functions like 5x4ex
3

, xex
3

, and x−2ex
3

are not eligible for undoing the chain rule, 

because applying the chain rule to ex
3

 results in the factor 3x2 , which necessarily has power 2. 
 

Now consider x2ex
3

 or 10x2ex
3

.  Are these eligible for undoing the chain rule, although they 
don’t have a coefficient of 3?   
 
Yes -- once the requirement of power 2 is met, we can determine the coefficient for the answer 
(i.e. the antiderivative) so that its derivative is the same as the given rate function. 
 

Specifically, if the antiderivative of   3x2ex
3

  is  ex
3

, then the antiderivative of   x2ex
3

(which is 

1/3 as much as 3x2ex
3

)  is 1/3 as much as ex
3

,  or  
1
3
ex
3

.    

 
To verify this answer, take its derivative using the chain rule to show that it is indeed the given 
function.  In other words, you should confirm that 
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	to verify that 
1
3
ex
3

 is an antiderivative of x2ex
3

. 

 
According to this discussion, let’s now generalize the Undoing the Chain Rule idea by 
accounting for possible factors and coefficients that will be important in the process. 
 
 
UNDOING THE CHAIN RULE:    
 

  k  g '( f (x)) f '(x) →
Anti−Derivative

k  g( f (x))  
 
 
Footnote:  The coefficient k in this statement of undoing the chain rule is the visible coefficient 
in the expression k g(f(x)) (the antiderivative), but it is not necessarily the visible coefficient in 
the given rate of change function on the left above.  Here k could be expressed as kv/c, where kv 
is the visible coefficient in the given function and c is the constant factor that is part of f '(x)  
from the chain rule.   The c that is part of f ‘ and the 1/c that is part of k multiply to 1, leaving kv 
as the visible coefficient of the rate function. 
 
 
Before we develop a general method of “undoing the chain rule” to find antiderivatives, the 
reflection question below gives you a little practice identifying whether or not a rate of change 
function has the from k  g '( f (x)) f '(x) .    Notice that, for “undoing the chain rule” to work, 
one factor in the rate function must be some constant times the derivative of f (x) , the 
argument of g. 
 
 
Reflection Question 9.2.1:  Which of the following functions are of the form kg '( f (x)) f '(x) ?  
For the functions that do not have the form kg '( f (x)) f '(x) , make one small change so that the 
modified version has this form. 
 
(Remember that multiplication is commutative. The factors of kg '( f (x)) f '(x)  can appear in any 
order in the given expression.) 
 

a)  4(sin x4 )x3    b)  x8 x9 + 4   c)    (sin x) esin x  d)  sin3 xcos x  
 

e)  (ln x)
5

x
   f)     g)  

(arctan x)2

1+ x2
  h) 10 tan(x)( )−7  

 
  
 
 

xex
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A Method for Undoing the Chain Rule 
 
Now let’s develop a method for applying this idea of undoing the chain rule: 
 

k  g '( f (x)) f '(x) →
Anti−Derivative

k  g( f (x))           
 

 
After recognizing that the given rate function has the form , the task is to recover . 
 
So, the big question for getting started is:  
 
What should be the focus in the given expression k  g '( f (x)) f '(x)  ,  if the desired answer is  
k  g( f (x)) ?     
 
Reflection Question: 
 
If a given rate function has the following structure and factors, 
 

k     g '( f (x))   f '(x)
↑          ↑          ↑
A          B           C    

 

 
 
which of A, B, and C will be the focus to determine the accumulation function   k  g( f (x))   ?   
 
Don’t read on until you’ve thought about this and can give reasoning for your choice. 
 
_________ 
 
Hopefully it’s obvious to you that ‘B’ is the clear choice, because it has all the information 
needed to find g(f(x)).  (Notice that ‘C’ has no way of revealing what the function g is, and ‘A’ 
contains no information about either f or g.) 
 
Examples of how to determine where to focus your attention when finding an antiderivatire 

The following examples emphasize how to recognize where to focus your attention when trying 
to find an antiderivative of a rate of change function. We will not find the antiderivatives yet. 
That will come in the next set of examples. 
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The given functions have the form k  g '( f (x)) f '(x) , making them eligible for undoing the chain 
rule.  For each identify the factor that has the role of g '( f (x))  and will be the focus in the 
process of finding the antiderivative. 
 

i)  (sec2 x)(tan x +1)5  
 
Both factors are composite functions, so the question is: which factor is f '(x) , the derivative of 

the argument of the other factor g '( f (x)) ?    Notice that 
  

d
dx

(tan(x)+1) = sec2 x , so sec2 x  has the 

role of f '(x) , and (tan x +1)5  has the form g '( f (x)) .  Thus, (tan x +1)5  will be the focus in 
finding the antiderivative.  
 

ii) 7e x

x
  

 
Even though this is a rational function (quotient), we can start by rewriting it as the product 

7ex
1/2
(x−1/2 ) .    Since ex

1/2
is the only composite function in this expression, we can verify that it 

is has the form g '( f (x))  by taking the derivative of  x1/2, which is 
1
2
(x−1/2 ) .  This is a constant 

times x−1/2 , the other factor in .  So x−1/2  is associated with f '(x) , and the factor to focus on in 

finding the antiderivative is ex
1/2

.  
 
 
 
Finding the Antiderivative 
 
Once you have identified the g '( f (x))  factor of the given function, you can determine the 
antiderivative, which is of the form k  g( f (x)) .   This method can be summarized as: 
 

g '( f (x))→ k  g( f (x))  
 

Comparing these two expressions reveals two steps needed to determine the second from the 
first: 
 

1) Write a composite function consisting of the antiderivative of g '  as the exterior, and f 
unchanged as the argument, i.e. g( f (x)) .  Include any visible constant coefficient from 
the given function and call this resulting function “the first attempt.” 
 

2) Determine, as required, the constant to be multiplied by the first attempt to adjust it 
resulting in the correct antiderivative.  Do this by taking the derivative of the first 

http://patthompson.net/ThompsonCalc/section_9_1.html
http://patthompson.net/ThompsonCalc
http://patthompson.net/ThompsonCalc/section_9_3.pdf


<	Previous	Section	 Home	 Next	Section	>	

attempt, comparing it to the given function, and reasoning with multiplication and/or 
division. 

 
 
 
 
Completing the Examples Started Above 
 
Let’s apply this technique to find the antiderivatives of the functions in the previous examples. 
 

i) (sec2 x)(tan x +1)5  
 
As discussed, the key factor is (tan x +1)5  which has the form g '( f (x)) .   
 
We recognize that the exterior function is “something to the fifth power,” i.e. (f(x))5  .  The 

antiderivative of x5 is 
1
6
x6  , so the first attempt at the antiderivative is 

  

1
6

(tan x +1)6 . 

 
Next to determine if a constant multiple is needed, take the derivative of the first attempt using 
the Chain Rule: 
 

  
1
6

(tan x +1)6     →
Derivative

    6 ⋅ 1
6

(tan x +1)6 ⋅sec2 x      

 
This derivative is equal to the given function, so no multiplier is needed.  Thus, the first attempt 

is correct; the principal antiderivative of  is 
  

1
6

(tan x +1)6 . 

 

ii) 7e x

x
 

The key factor in this function, as discussed above is e x  or ex
1/2

.  The first attempt is found by 
taking the antiderivative of the exterior function “e to the something,” leaving the argument f(x) 

unchanged, and including the coefficient of 7.  So, the first attempt is 7ex
1/2

(since the 
antiderivative of ex is simply ex). 
 
To find the constant multiplier, take the derivative of the first attempt using the Chain Rule and 
compare it to the original function.   
 

7ex
1/2

   →
Derivative

   7 ex
1/2

⋅ 1
2 x

−1/2   which can be rewritten as  7e
x

2 x
. 
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The derivative of the first attempt is 1/2 as much as the original function, i.e. there’s an unwanted 
2 in the denominator.  To determine the multiple needed, ask “by what do I need to multiply the 
first attempt so that the resulting derivative will not have that factor of 1/2?”  Clearly, we need a 
multiple of 2.  Thus, the finalized antiderivative is   
 

2 ⋅7ex
1/2

= 14e x  
 
You should check that this is indeed the correct antiderivative by taking its derivative to see that 
it is exactly the original function given. 

 
 
 
 

 
More Examples 
 
Example 1 Find the principal antiderivative of p(x) = x4(x5 −1)9  . 
 
Solution 
 
First confirm p does qualify for the Undoing the Chain Rule by observing that x4 is a constant 
multiple of the derivative of the argument x5 – 1. 
 
This means that (x5 −1)9 has the role of  g '( f (x)) . 
 
The first attempt consists of the antiderivative of “something to the 9th” leaving the argument 

unchanged.  So the first attempt is 
1
10
(x5 −1)10  . 

 
To check and find a possible constant multiple needed, take the derivative of the first attempt: 
 

10 ⋅ 1
10
(x5 −1)9 ⋅5x4  .  This is 5 times as much as the original function, so we multiply the first 

attempt by 1/5 to get the finalized antiderivative: 
 
1
5
⋅ 1
10
(x5 −1)10 = 1

50
(x5 −1)10  

 
To confirm this answer, show that its derivative is equal to the original function. 
 
 

Example 2 Find the principal antiderivative of d(x) = sin x
cos4 x

 . 

http://patthompson.net/ThompsonCalc/section_9_1.html
http://patthompson.net/ThompsonCalc
http://patthompson.net/ThompsonCalc/section_9_3.pdf


<	Previous	Section	 Home	 Next	Section	>	

 
Solution 
 
Rewrite d as a product:  (sin x)(cos x)−4   
 
Confirm d does qualify for the Undoing the Chain Rule by observing that sin x is a constant 
multiple of the derivative of the argument cos x. 
 
This means that (cos x)−4 has the role of  g '( f (x)) . 
 
The first attempt consists of the antiderivative of “something to the negative 4th” leaving the 

argument unchanged.  So the first attempt is −
1
3
(cos x)−3  . 

 
To check and find a possible constant multiple needed, take the derivative of the first attempt: 
 

(−3) − 1
3

⎛
⎝⎜

⎞
⎠⎟
(cos x)−4(−sin x) = −(cos x)−4(sin x) .  This is -1 times as much as the original function, 

so we multiply the first attempt by -1 to get the finalized anti-derivativ: 
 

(−1) ⋅ − 1
3
(cos x)−3

⎛
⎝⎜

⎞
⎠⎟
= 1
3
(cos x)−3  

 
To confirm this answer, show that its derivative is equal to the original function. 
 
 
 
 

Example 3 Find the principal antiderivative of g(x) = e2x

e2x +8
 . 

 
Solution 
 
Rewrite g as a product:  (e2x )(e2x +8)−1   
 
Confirm g does qualify for the Undoing the Chain Rule by observing that e2x is a constant 
multiple of the derivative of the argument e2x + 8. 
 
This means that (e2x +8)−1has the role of  g '( f (x)) . 
 
The first attempt consists of the antiderivative of “something to the -1” leaving the argument 
unchanged.  Finding the antiderivative by applying the reverse “power rule” to this composite 
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function yields 
1
0
⋅(e2x +8)0 . This is very problematic for more than one reason, saying loudly to 

us that something’s wrong here! 
 
Returning to (e2x +8)−1 , we ask the question “What function has derivative x-1 or 1/x?”  You 
should recall that the function is ln x. 
 
So the first attempt is ln(e2x +8) . 
 
To check and find a possible constant multiple needed, take the derivative of the first attempt: 
 
(e2x +8)−1 ⋅(e2x ) ⋅2 .  This is 2 times as much as the original function, so we multiply the first 
attempt by 1/2 to get the finalized antiderivative: 
 
1
2
ln(e2x +8)  

 
To confirm this answer, show that its derivative is equal to the original function. 
 
 
 
 
 
 
Accumulation Functions and the Fundamental Theorem 
 
Because of our work in this section and the Fundamental Theorem, we can now write 
accumulation functions in closed form whenever we’re given rate of change functions that have 
the form of a Chain Rule derivative. 
 

For example, we found that the principal antiderivative of   is 
1
6
(1+ tan x)6 .  

According to the Fundamental Theorem, that means  
 

(sec2 t)(tan t +1)5

a

x

∫ dt   =   1
6

(1+ tan x)6 − 1
6

(1+ tana)6   

 
In other words, given the rate of change function f (x) = (sec2 x)(tan x +1)5 , we can easily write 

down the associated accumulation function in open form:  F(x) = (sec2 t)(tan t +1)5
a

x

∫ dt .  But 

(sec2 x)(tan x +1)5
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now because of Undoing the Chain Rule and the Fundamental Theorem, we can find and write 

this accumulation function F in closed form:  F(x) = 1
6
(1+ tan x)6 − 1

6
(1+ tana)6 . 

 
Reflection Question 9.2.2   For each open form accumulation function given:  i) write the 
function in closed form, ii) write in words the meaning of the value represented with function 
notation, and iii) write a mathematical expression that could be used to compute the represented 
value with a basic scientific calculator.  (Hint: for part i), make use of all the work already done 
in this section!) 
 

a) H (x) = e2t

e2t +80.9

x

∫ dt     ,    H (3)  

 

b) Q(x) = sin t
cos4 tπ

x

∫ dt     ,    Q(9π / 4)  

 

c) F(x) = t4(t5 −1)9

−2

x

∫ dt     ,    F(−0.5)  

 

d) J (x) = 7e t

e t
5.6

x

∫ dt     ,    J (5.8)  

 
 
 
 
Bacteria Example 
 
A culture bacteria in a particular dish has an initial population of 250 cells and grows at a rate of 
rB(t) = 50e

0.3t  cells / day.   
 

a) Write two expressions for B, the population t days after the initial measurement: in open 
form, and in fully simplified closed form. 

b) Represent in 3 different ways the population 10 days after the initial measurement.  Find 
the population value in the most efficient way. 

c) Represent the change in population from day 8 to day 15 in open form, with function 
notation, and find the amount of change. 

 
Solution 
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a)  Write two expressions for B, the population t days after the initial measurement: in open 
form, and in fully simplified closed form. 
 
The number of bacteria t days after the initial measurement, B(t), consists of the initial value plus 
the accumulated number of bacteria from 0 to t days after the initial measurement.  Thus, the 
open form representation of B is: 
 

B(t)  =   250  +   
0

t

∫50e0.3wdw   

 
To find a closed form for B, we’ll need to find the antiderivative of the rate function using 
Undoing the Chain Rule.  Since the antiderivative of “e to the something” is simply “e to the 
something,” the first attempt is  50e0.3w , and its derivative is  50e0.3w ⋅(0.3) .  This is 0.3 times as 
much as the original rate function, and so we’ll multiply the first attempt by 1/0.3 to get the 

finalized antiderivative,  50
0.3
e0.3w .  Now apply the Fundamental Theorem to rewrite B: 

B(t)  =   250  +   
0

t

∫50e0.3wdw

=   250  +   50
0.3
e0.3w  

0

t

=   250  +   50
0.3
e0.3t   −   50

0.3
e0.3(0)

=   500
3
e0.3t   +   250

3

  

NOTE!!  Plugging t = 0 into the antiderivative results in a NON-ZERO value, -50/0.3.  Thus the 
constant term in the final answer is 250 – 50/0.3 = 250 / 3 .  It is essential that you fully apply the 
Fundamental Theorem and include this term for which t = 0 to get the correct closed form for B!! 
 

Thus, the closed form representation of B is B(t) =  500
3
e0.3t   +   250

3
  

 
 
b)  Represent in 3 different ways the population 10 days after the initial measurement.  Find the 
population value in the most efficient way. 
 
 
The population after 10 days can be represented with… 
 
… function notation:  B(10) 
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…the open form of the accumulation function:   250  +   
0

10

∫50e0.3wdw   

 

…the closed form of the accumulation function:   
500

3
e0.3(10)   +   250

3
  

 
 
The closed form of the accumulation function most easily generates the number of bacteria: 
 
500

3
e0.3(10)   +   250

3
  =  3430 bacteria 		(Don’t round up to 3431 since that number of bacteria 

has not yet been reached at exactly 10 days after the initial measurement.)  
 
 
c)  Represent the change in population from day 8 to day 15 in open form, with function 
notation, and find the amount of change. 
  
 
The change in population from day 8 to day 15 can be represented in function notation as B(15) – 
B(8). 
 
We could use the open form of B to express this value, but it is rather lengthy: 
 

250  +   ∫
0

15

50e0.3wdw
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    −     250  +   ∫
0

8

50e0.3wdw
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	

	
	
Alternatively, we can consider a different function: the net change in population starting from t = 
8, rather than from t = 0.  Then the change in bacteria population over this time period would be 

represented much more compactly as  
8

15

∫50e0.3wdw  . 

 
To find this value, apply the Fundamental Theorem to this new integral, using the antiderivative 
already found: 
 

 
8

15

∫50e0.3wdw  =   50
0.3
e0.3w  

8

15

   =   500
3
e0.3(15)  −  500

3
e0.3(8)    =   13,165 bacteria  

 
Note this value is not the number of bacteria at t =15 days but is rather the net change, or added 
number of bacteria, starting from t = 8 to t = 15 days since the initial measurement. 
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Exercise Set 9.2 
 

1. For each accumulation function given in open form, find an equivalent closed form. 
 

a) (arcsin t)4

1− t24

x

∫ dt   b) (ln t)6

t1/2

x

∫ dt   c) t6et
7

−2

x

∫ dt   d) 

12(sin2 t)(cost)
−2

x

∫ dt  

 

e) dt
2−8t5

x

∫   f) dt

t ln t13

x

∫   g) cost
8sin t + 7

2π

x

∫ dt  h) cos(5 / t)
t2−1

x

∫ dt  

i) t2 9+ t3
−2

x

∫ dt   j) dt
t(1+ ln t)4/3

x

∫   k) 29t
0

x

∫ dt     l) sin(7t)cos(7t)
π /2

x

∫ dt  

 

m) 1
(6t + 9)1.80

x

∫ dt   n) (t2 +10t + 32)3(t +5)
16

x

∫ dt  o) tan t sec2 t
3π /8

x

∫ dt  p)  t
t2 + 615

x

∫ dt  

 
 

 
2. Some rate functions require algebraic manipulation or simplification to set the stage for 

Undoing the Chain Rule or other antiderivative techniques.   
 

Find an equivalent closed form for each function. 
 

a) 5t + 4
t2 +1π /4

x

∫ dt  (Hint: begin by writing the rate function as a sum of fractions) 

b) 4 tan t
1

x

∫ dt  (Hint: begin by using a trig identity to change the form of the rate function)

  
 
 

3. The goal is efficiency….not the procedure! 
 
We introduced the step-by-step method for Undoing the Chain Rule only as a means of getting 
started in finding these types of antiderivatives.  Instead of memorizing these steps and following 
them for every future problem, the real goal is that eventually you can all at once imagine the 
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function whose derivative (found by the chain rule) is the function you are given.  The obvious 
benefit of learning this skill is having maximum efficiency in finding such accumulation 
functions in closed form – there is no faster way!  In addition, learning and practicing an “all at 
once” technique keeps you focused on the Chain Rule rather than some new and unrelated 
method.  It will also sharpen your mental computation skills. 
 
Review your solutions to #1 above, thinking about the common overall pattern to these solutions 
rather than the procedure.  Then try to determine the antiderivatives of the functions below in 
your head; that is, try to write down only the final answer.  Do your best, but don’t be afraid to 
go for it!... because remember with any attempt, you can take its derivative to check it and then 
adjust if you need to. 
 
For each function, write down, without any intermediate steps, its principal antiderivative.  Take 
the derivative of your answer to confirm it’s correct; if it isn’t then make an adjustment so that 
the new version is correct. 
 

a) cos(-14x)    
b) (x2 − 9)5x   

c)   
(arctan x)2

1+ x2
 

d) (sin x) ecos x  

e) e−x +5
ex

 

f) 1
6x

  

g) (sin2x7 )x6  
h) 12e-3x 

 
 
 

4. Application Problem 
 
 
 
 
 
 [Note to Pat:  I considered putting this summary / review of the steps at the end of the section 
right before the Exercise Set, but I think I prefer to leave it out.] 
 
Summary of Undoing the Chain Rule Method 
 

1) Verify that the rate function indeed has the form k  g '( f (x)) f '(x)  
 

http://patthompson.net/ThompsonCalc/section_9_1.html
http://patthompson.net/ThompsonCalc
http://patthompson.net/ThompsonCalc/section_9_3.pdf


<	Previous	Section	 Home	 Next	Section	>	

2) Find and focus in on the key factor in your rate function: g '( f (x)) .  (This can be 
anywhere in the expression –   beginning, middle, or end – since multiplication is 
commutative.) 
 

3) Determine the antiderivative of the exterior function g′, and write it (i.e. g) with argument 
f unchanged.   This composite function, multiplied by the coefficient of the given rate 
function, is the ‘first attempt.’ 
 

4) Check the first attempt by finding its derivative with the Chain Rule.  If the derivative of 
the first attempt is equal to the original rate function, then you’re done; the first attempt is 
the principal antiderivative in closed form.   
 

5) Otherwise, the derivative should be some constant multiple c times the original rate 
function (if it’s not, you’ve made an error somewhere in steps 1-4 above).   Multiply the 
first attempt by 1/c to produce the correct antiderivative. 

 
 
 
Because the mindset in finding accumulation functions is always “what function has my given 
function as its derivative?”, you should continually be taking derivatives of your proposed 
answers to check if your antiderivative is correct.  This verification process will play an essential 
role in all of the methods in this chapter, including undoing the chain rule. 
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