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T
he study of trigonometry suffers from a 
basic dichotomy that presents a serious 
obstacle to many students. On the one 
hand, we have triangle trigonometry, in 
which angles are commonly measured 

in degrees and trigonometric functions are defined 
as ratios of sides of a right-angled triangle. On the 
other hand, we have circle trigonometry, in which 
angles are commonly measured in radians and trig-
onometric functions are expressed in terms of the 
coordinates of a point on the unit circle centered at 
the origin. Faced with two such distinct conceptual 
approaches to trigonometry, is it any wonder that 
so many of our students get confused?

Once students begin to use the sine and cosine 
as examples of periodic functions, circle trigo-
nometry dominates, but there is a tradition that 
triangle trigonometry is the simpler and more basic 
form and that students need to be grounded in this 
before being introduced to circle trigonometry. In 
fact, the historical evidence points in exactly the 
opposite direction. 

Trigonometry—circle trigonometry—arose 
from the study of the heavens by the classical 
Greeks. It took more than a thousand years from 
the initial development of trigonometry by Hip-
parchus in the early second century BCE before 
triangle trigonometry was developed in earnest. 
An emphasis on triangles rather than circles is 
implicit in Al-Khwarizmi’s work on shadows in 
the early ninth century CE, but this was not fully 
developed until Al-Biruni’s Exhaustive Treatise on 
Shadows of 1021. Even so, applications of triangle 
trigonometry and, especially, the interpretation of 
trigonometric functions as ratios of sides of right-
angled triangles did not achieve prominence until 
the sixteenth century. The switch in instructional 
emphasis from circle trigonometry to triangle 
trigonometry did not occur until the mid- to late-
nineteenth century.

This historical overview of the development of 
trigonometry will present an argument for begin-
ning the study of trigonometry with the circle 
definitions of the trigonometric functions and angle 
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measurement. The historical information is based 
on Van Brummelen (2009) with additional details 
from Katz (2009) and Heath (1981); additional 
information on the history of trigonometry and 
classroom ideas can be found in Baumgart (1989). 

THE FUNDAMENTAL PROBLEM  
OF TRIGONOMETRY
The fundamental problem from which trigonom-
etry emerged is one that students seldom if ever see:

�Given an arc of a circle, find the length of the 
chord that connects the endpoints of the arc 
(see fig. 1).

Perhaps the first problem that used what today we 
understand as trigonometry was one solved by Hip-
parchus of Rhodes (ca. 190–120 BCE): The seasons 
are of unequal length. Winter, at eighty-nine days, is 
the shortest; summer, at ninety-three and five-eighths 
days, is the longest. Hipparchus explained why. 

Hipparchus used the observed lengths of the 
seasons to determine the length of the arc traveled 
by the sun in its orbit during each season. He then 
found the lengths of the chords that connect the 
sun’s position at the ends of the seasons. These 
lengths enabled him to determine how far the earth 
is from the center of the sun’s orbit (see fig. 2). 
(For a full description of this problem and its solu-
tion, see Hipparchus.pdf at www.nctm.org/mt.) 

Arc lengths were usually measured in degrees, 
360° being the full circumference of the circle. The 
length of the chord (denoted as crd) would depend 
on the radius, denoted by R. Some chords are easy 
to find (see fig. 3): 

		  crd 180° = 2R
		  crd 90° = 12 R ≈ 1.414R
		  crd 60° = R

Euclid showed how to calculate other chord 
lengths when he determined the lengths of the 
sides of regular inscribed pentagons and decagons 
(see fig. 4):
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(For Euclid’s proofs, see Euclid.pdf at www.nctm 
.org/mt.)

The general problem for astronomical work 
requires determining the chord length for any arc 
length. This is almost certainly the first example 
in mathematics history of a functional relation-
ship without an explicit formula for calculating 
the output value for each input value. We are told 
that Hipparchus constructed a table of approximate 
values. The earliest such table that still survives 
was built by Ptolemy of Alexandria (90–168 CE) 
in his great work on astronomy, the Mathematical 
Treatise, better known by the Latinized version of 
its Arabic name, the Almagest (literally, The Great 
Book). Ptolemy constructed a table of chord lengths 
for a circle of radius 60 in half-degree increments. 
Ptolemy’s work includes full proofs and requires 
some very impressive use of Euclidean geometry. 
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Fig. 1  Students in trigonometry are rarely asked to find the 

length of a chord intercepting an arc of a given length.

Fig. 2  Hipparchus used chord lengths to determine the 

distance from the earth to the center of the sun’s orbit.

arc

chord

Winter
solstice

Summer
solstice

Autumnal
equinoxSpring

equinox

89
days

897/8
days

935/8
days

923/4
days

Earth

center

R

12R 90°

RR
60°

Fig. 3  The lengths of some chords are easily determined.
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(For a description of Ptolemy’s work, including 
proofs, see Ptolemy.pdf. at www.nctm.org/mt.) 

What chord lengths have to do with trigonom-
etry may not be immediately clear. If we rotate 
the circle so that the chord is vertical and insert a 
few radial lines, we can see how to translate chord 
lengths into the sine function: If the chord subtends 
an arc length of 2q and the radius of the circle is 
R, then half the chord length is Rsinq. The chord 
of arc length 2q is 2Rsinq (see fig. 5), or crd(2q) = 
2Rsinq. Ptolemy’s table is equivalent to a table of 
sines in quarter-degree increments. His calculations 
were carried out to seven-digit accuracy.

The shift to the half-chord, or sine, was made 
by Indian astronomers in the third, fourth, or fifth 
century CE. They also provided the source for our 
word sine. The Sanskrit word for chord was jya, 
and what we would refer to as the sine they named 
the ardha-jya, meaning “half-chord.” In time, as 
astronomers adopted the practice of working only 
with the half-chord, the prefix was dropped, and 
just jya or jiva came to refer to the half-chord, or 
sine. When Arab astronomers learned Indian trigo-
nometry, they transliterated jiva as jyba, with a 
spelling equivalent to jyb because the vowel a was 
not written. But jyba is not an Arabic word, and 
the word jayb is also spelled with the same three 
letters, jyb. By the time Arab trigonometric texts 
were translated into Latin, the pronunciation had 
shifted. Jayb can mean a fold or a bay; so European 
astronomers translated this word into the Latin 
sinus, which encompasses that meaning. From 
sinus, we get the English sine. But the term’s true 
meaning is “half-chord.”

THE DEVELOPMENT OF ANGLE 
MEASUREMENT
Today we define degrees as a fraction of a complete 
revolution, a characterization that is neither pre-
cise nor particularly clear. Until the late nineteenth 
century, degrees were considered a measure of arc 
length: 1° equals 1/360th of the circumference of the 
circle. One could speak of degrees as the measure of 
an angle between two intersecting line segments, but 
one would measure the angle by centering a circle 
at the intersection and determining the length of the 
arc between these segments (see fig. 6). 

The size of a degree—because it is a fixed fraction 
of the circumference—depends on the radius of the 
circle. So does the length of the chord. Those who 
created tables of sines would pick a radius convenient 
to their calculations. This value was known as the 
sinus totus and could be read from the value of sin 90°. 
Ptolemy used a radius of 60 because his fractions 
were expressed in 60ths (minutes from pars minuta 
prima = first small part), 60ths of 60ths (seconds from 
secunda pars minuta = second small part), and 60ths 

of 60ths of 60ths. Georg Rheticus (1514–74), the first 
European to publish tables of all six trigonometric 
functions, chose a radius of 1,000,000,000,000,000 = 
1015. This approach may seem strange until one real-
izes that it enabled him to create a table with fifteen-
digit accuracy without recourse to decimals (not yet 
in common use) or fractions. 

Indian astronomers also were the first to recog-
nize that—because the sine relates two lengths—
using the same units for both is convenient. If the 
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Fig. 4  Not until Euclid could geometers determine the side lengths of regular  

pentagons and decagons. Ptolemy used these measures to construct his table of 

chords. See the Web materials for how the golden ratio is involved.

Fig. 5  When the chord intercepts an arc of 2q, then its 

length is 2Rsinq, where R is the radius of the circle.
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Fig. 6  Until the late 1800s, angles were measured by cen-

tering a circle at the intersection of two line segments.
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circumference is 360°, then the radius should be 
360/2p ≈ 57.3°. Decimals did not yet exist, and 
working with a mixed number is awkward, so 
Indian astronomers often chose instead to measure 
the circumference in minutes: 60 • 360 = 21,600. 
This approach gives a radius, or sinus totus, that 
could be taken as 3438. Measuring radius and arc 
length in the same units then enabled them to find 
polynomial approximations to the sine and cosine. 
For example, by the start of the fifteenth century it 
was known that for a radius of R = 1, the sine of q 
could be approximated by q – q3/6. In the following 
century, astronomers in Kerala in southwest India 
extended this result to find polynomial approxima-
tions of arbitrarily large degree as well as infinite 
series expansions for the sine and cosine.

It was Leonhard Euler (1707–83) who decided 
that the radius should be fixed at 1. He also realized 
that, for the purposes of calculus, measuring the arc 
and line lengths in the same units was absolutely 
essential. If the radius is 1, then the circumference 
is 2p. The arc length that had been described as 45° 
was now p/4. Euler might seem to be using radi-
ans, but he really was not. He was simply using the 
same units to measure the radius, the sine (or half-
chord), and the arc that determined the sine. The 
term radian would not come into existence until 
the argument of the trigonometric functions had 
shifted from an arc length to an angle measured as 
a fraction of a turn—not until almost a hundred 
years after Euler’s death.

THE EMERGENCE OF TRIANGLE 
TRIGONOMETRY
Triangle trigonometry began with the problem of 
determining the length of a shadow cast by a ver-
tical stick, or gnomon, given the angle of the sun 

from vertical (see fig. 7). Ptolemy computed this 
at noon on the day of the equinox at latitude 36° 
(at which time the angle of inclination is 36°), but 
the earliest known table of such values was pro-
duced by Al-Khwarizmi of Baghdad (ca. 790–840). 
This is the same mathematician whose name is 
immortalized in our word algorithm and whose 
book on al-jabr, the source of our word algebra, is 
one of the most important milestones in the devel-
opment of algebra. 

Because the line length that we are calculating 
is tangent to the circle, this function came to be 
known as the tangent. The secant, arising from the 
Latin secantem, meaning “cutting,” is the length of 
the radial line segment cut off by the tangent. The 
cosine, cotangent, and cosecant are the correspond-
ing line segments for the complementary angle 
(see fig. 8). All six functions make their first joint 
appearance in the late tenth century in the com-
mentary on the Almagest written by Abu’l Wafa 
(940–98), who also worked in Baghdad.

Applications of trigonometry to the calculation 
of sides of right triangles do not achieve promi-
nence until 1533, with the posthumous publica-
tion of De Triangulis Omnimodis (On Triangles 
of Every Kind) by Johann Müller (1436–76), also 
known as Regiomontanus (see fig. 9). Bartho-
lomew Pitiscus (1561–1613) is responsible for 
the word trigonometry; he chose Trigonometria, 
a Greek-to-Latin transliteration of “triangle mea-
surement,” for the title of his book. This book also 
marks the beginning of the common use of trigo-
nometry in surveying. According to Katz, many of 
the trigonometry texts through the sixteenth cen-
tury illustrated methods of solving plane triangles, 
“but not until the work of Bartholomew Pitiscus 
in 1595 did there appear any problem in such a 
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Fig. 7  Determining the length of a shadow cast by a verti-

cal pole generated the study of triangle trigonometry.
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text explicitly involving the solv-
ing of a real plane triangle on 
earth” (Katz 2009, p. 440).

Müller, Rheticus, and 
Pitiscus used trigonometry and 
similar triangles to solve for an 
unknown side of any given right 
triangle for which one of the 
acute angles and one other side 
are given. However, once Euler 
had fixed the radius of the defin-
ing circle at 1, it became possible 
to think of trigonometric func-
tions as actual ratios of the sides. 
Eventually, it was discovered 
that if finding an unknown side 
of a right triangle is the main 
purpose for studying trigonom-
etry, then the ratio definition 
is the most efficient means of 
defining these functions. The 
earliest textbook I have found 
that takes this approach was published in Ger-
many in 1844 (Recht 1844). To my knowledge, 
the earliest such American textbook was pub-
lished by an instructor at the U.S. Naval Academy 
in 1850 (Chauvenet 1855). 

The appearance of the unit 
we call radian provides evi-
dence of when the ratio defi-
nition of trigonometric func-
tions became pervasive. Once 
trigonometric functions are 
totally divorced from circles, it 
no longer makes sense to treat 
the argument as an arc length. 
Thus, a different approach to 
the measurement of an angle is 
needed, leading to the definition 
of a degree as a fraction of a 
complete revolution. The degree 
becomes 1/360th of a full turn, 
forcing practitioners to devise 
a name for the unit being used 
when 2p corresponds to a full 
turn. Although there is some 
uncertainty about who first 
coined the word radian as a 
contraction for “radial angle”—

whether it was Thomas Muir or James Thomson, 
brother of Lord Kelvin—the term emerged some-
time between 1869 (the earliest date claimed by 
Muir) and 1873 (the earliest appearance of this 
word in print by Thomson).

Fig. 9  Epitome of the Almagest 

(1496), by Johann Müller and George 

Peurbach, was their translation of and 

commentary on Ptolemy’s Almagest. 

The frontispiece is shown.
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PEDAGOGICAL CONSIDERATIONS
In the mid-nineteenth century, when those studying 
trigonometry were most likely to use it in naviga-
tion and surveying, defining these functions as ratios 
made sense. There is convincing evidence that this 
approach does help students working on this type of 
problem (Kendal and Stacey 1998). But today stu-
dents are more likely to encounter the sine and cosine 
as periodic functions rather than as navigational 
aids. Biological, physical, and social scientists use 
them more often to model periodic phenomena than 
to find the unknown side of a right triangle. If we 
want our students to understand trigonometric func-
tions as functions, then the historical definitions that 
describe them as relating two lengths—arcs and line 
segments—are more transparent. Several researchers 
(Moore 2009; Thompson 2008; Weber 2005) have 
documented the confusion that arises when students 
and even teachers schooled in thinking of the sine as 
a numerical descriptor of a particular family of similar 
triangles try to stretch this understanding to one that 
encompasses a function of an angle. 

It is no wonder that students have difficulty 
comprehending radians. One 360th of a “full turn” 
makes sense. We divide this revolution into 360 
equal parts and take one of them. Few students can 
conceptualize what one 2pth of a full turn might be. 
Of course, 1/(2p) is a fraction that is mathemati-
cally meaningful, but it is also conceptually diffi-
cult. Much easier is to approach radian measure via 
Euler’s understanding of trigonometry, taking the 
argument of the sine as an arc length on a circle of 
radius 1 and then describing the value of the sine as 
the length of the corresponding half-chord. 

History has much to teach us, and we ignore at 
our peril the historical route by which our ances-
tors were led to discover important mathematical 
ideas. We would do well to introduce trigonometry 
by imitating the astronomers who first discovered 
and explored these functional relationships by see-
ing them as connecting lengths of arcs and lengths 
of line segments. This is not to downplay the impor-
tance of triangle trigonometry or the understanding 
of the trigonometric functions as ratios, but if trigo-
nometric functions are first introduced as lengths of 
line segments in a circle of radius 1, then they have 
a concrete meaning. From this, it is then possible to 
argue from similar triangles that these functions can 
also represent ratios. For students who first memo-
rize trigonometric functions as ratios, making the 
transition to seeing them as lengths is much harder.

We can learn from Henri Poincaré, who advised, 
“The task of the educator is to make the child’s 
spirit pass again where its forefathers have gone, 
moving rapidly through certain stages but suppress-
ing none of them. In this regard, the history of sci-
ence must be our guide’’ (1899, p. 159).

DAVID M. BRESSOUD, bressoud@
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Professor of Mathematics at Macal-
ester College in St. Paul, Minnesota, 

and president of the Mathematical Association 
of America. He enjoys using history to show 
that mathematics comes from real people who 
struggled with the same concepts that students 
wrestle with today.    Greg Helgeson

For the author’s full descriptions of the problems 
and solutions presented by Hipparchus, Euclid, and 

Ptolemy, go to the Mathematics Teacher Web site: www 
.nctm.org/mt.
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Supplement to “Historical Reflections on Teaching

Trigonometry”: Hipparchus

David M. Bressoud

March 13, 2010

We do not know the very first problem that used trigonometry in the sense of using
the measure of an angle to find the length of a line segment. In the third century bce,
Aristarchus used angle measurements to estimate the distance to the moon and Archimedes
estimated the width of the sun (see Van Brummelen, pp. 20–32). But neither of them used
a table of values of chords or sines. Both used the fact that the angles they were considering
were extremely small, and thus the chord length could be approximated by the arc length.
Ptolemy credits the first table of chord lengths to Hipparchus and also credits him with
the solution to the problem of the unequal seasons, perhaps the earliest problem that was
solved using such a table.

An observation that was noted by Aristotle and that puzzled ancient astronomers is
that the seasons are not of equal length. During the course of the year, the sun travels along
the ecliptic, the circular path through the heavens that proceeds through the constellations
that are recorded as the signs of the zodiac. The positions of the sun at the winter and
summer solstices were observed to be diametrically opposite points on this circle. Moving
out at right angles marked the spring and autumnal equinoxes, the half way points between
the solstices. Together, the solstices and equinoxes were chosen to mark the changes of the
seasons. Since the earth was assumed to be the center of the universe with the sun making
its annual trajectory along this circular path, the seasons should be of equal length. They
are not.

Modern calculations give the following approximate values to the lengths of the seasons:

winter 89 days,

spring 923
4 days,

summer 935
8 days,

fall 897
8 days.

Hipparchus of Rhodes (circa 190–120 bce) explained this discrepancy by moving the earth
off the center of the universe so that the perpendicular chords marking out the seasons do

1
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Figure 1: Hipparchus modeled the sun’s path by moving the earth away from the center.

not cut arcs of equal length (see Figure 1). That raised the natural question: How far off
center is the earth?

To answer this, we first convert the length of each season into the length of the corre-
sponding arc, where the full circumference has length 360◦. For example, the arc length of
winter is 89/36514 of the circumference. In terms of degrees, this is

89
365.25

· 360 ≈ 87 +
43
60

,

or approximately 87◦ 43. In terms of arc length, the seasons are

winter 87◦ 43,

spring 91◦ 25,

summer 92◦ 17,

fall 88◦ 35.

Fall and winter together account for an arc length of 176◦ 18, which means that the arc
length from the spring equinox to the horizontal diameter of the sun’s path is 1◦ 51 (see
Figure 2). If we can find the chord of 3◦ 42, then half that chord is the vertical displacement
of the earth from the center of the universe.

Of course, the actual distance depends on the radius of this circle. The radius is the
average distance between the earth and the sun, which is 1 astronomical unit (au)—known

2
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Figure 2: Arc lengths of the sun’s path (not to scale).

today to be about 150 million km. Using the values of the sine function, we can calculate
the chord length (crd) to be

crd (3◦ 42) = 2 sin(1◦ 51) = 2 sin 1.85◦ = 0.065 au.

The vertical displacement is half that, about 0.032 au.
Winter and spring account for 179◦ 08. The arc length from the summer solstice to

the vertical diameter of the sun’s path is only 26 minutes. The horizontal displacement is
approximately half the chord of 52:

crd (52) = 2 sin(26) = 2 sin 0.433◦ = 0.015 au,

for a horizontal displacement of 0.0075 au.
By the Pythagorean theorem, the distance from the earth to the center of the universe

is about
√

0.00752 + 0.0152 = 0.017 au.
Exactly the same mathematics can be used if we assume that the earth circles the sun

in a circular orbit at constant angular velocity. The sun would be about 2.55 million km
from the center of the earth’s orbit. But that is not what actually happens. The earth’s
orbit is elliptical, and the earth speeds up as it gets closer to the sun and slows down as it
recedes. In fact, the sun, which is located at one of the foci of the earth’s orbit, is just a
little less, about 2.5 million km, from the center of the earth’s orbit.
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Trigonometry”: Euclid

David M. Bressoud

June 9, 2010

When Ptolemy constructed his table of chords, he was able to start with the chords of
arc lengths 180◦, 90◦ and 60◦ as well as two chords that can be found in Euclid’s Elements:

crd 36◦ =
√
5− 1
2

R, and crd 72◦ =


5−

√
5

2
R,

where R is the radius of the circle. This is not quite the way that Euclid stated these
results. These results are contained in Book XIII, Propositions 9 and 10:

Book XIII, Proposition 9. If the side of the hexagon and that of the decagon inscribed
in the same circle are added together, then the whole straight line has been cut in extreme
and mean ratio, and its greater segment is the side of the hexagon.

Book XIII, Proposition 10. If an equilateral pentagon is inscribed in a circle, then the
square on the side of the pentagon equals the sum of the squares on the sides of the hexagon
and the decagon inscribed in the same circle.

We first will see how to interpret these statements as chord lengths of the respective
angles. We then will prove the propositions.

The side of the inscribed hexagon is the chord of 60◦, which is R, the radius of the
circle. The chord of the inscribed decagon is the chord of 36◦. To say that a line segment
has been cut in “mean and extreme proportion” means that the ratio of the longer to the
shorter length is the golden ratio: (1 +

√
5)/2. Proposition 9 states that

R

crd 36◦
=
1 +

√
5

2
.

Equivalently,

crd 36◦ =
R

(1 +
√
5)/2

=
2R√
5 + 1

·
√
5− 1√
5− 1

=
2R(

√
5− 1)

5− 1
=
√
5− 1
2

R.
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K 

Figure 1: The ratio of the radius to the chord of 36◦, R/x, is equal to (1 +
√
5)/2.

The side of the inscribed pentagon is the chord of 72◦. Proposition 10 implies that

(crd 72◦)2 = R2 +

√
5− 1
2

R

2

=


1 +

�√
5−1

2

22


R2

=


1 +

6− 2
√
5

4


R2

=
10− 2

√
5

4
R2

=
5−

√
5

2
R2.

The value of crd 72◦ is found by taking the square root of each side.
The proofs of these propositions, while following those of Euclid, have been cast into

modern terminology. A direct translation of Euclid’s proofs can be found at
http://aleph0.clarku.edu/∼djoyce/java/elements/toc.html

Proof of Proposition 9. See Figure 1. The length of AB, one side of the inscribed decagon,
is denoted by x. Since triangle OAB is isosceles, ∠OAB = 72◦. Extend the line segment
AB and the radial line to the next vertex of the decagon so that they meet at point K.
The angle at K is ∠AKO = 36◦.

Since triangle OBK is isosceles, BK = R. By the similarity of triangles OAK and

2
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Figure 2: The square of the chord of 72◦ is equal to the sum of the squares of the radius
and of the chord of 36◦: y2 = R2 + x2.

ABO, we obtain the relationship

R

x
=

R+ x

R
= 1 +

x

R
.

Let z = R/x. The equation is z = 1 + z−1, which Euclid immediately recognized as the
equation of mean and extreme proportion. In modern algebraic notation, we convert this
to the quadratic equation z2 − z − 1 = 0 which can be solved for z:

R

x
= z =

1 +
√
5

2
.

We now know that the chord of 36◦ is R
�√
5− 1


/2.

Proof of Proposition 10. See Figure 2. The length of AB, one side of the inscribed pen-
tagon, is denoted by y. The length of AD, one side of the inscribed decagon, is denoted
by x. Draw the perpendicular bisector of DB, and denote by C the point at which it
intersects AB. It follows that ∠OAB = ∠AOC = 54◦, and therefore triangles OAB and
COA are similar isosceles triangles. Therefore,

R

y
=

AC

R
=⇒ R2 = y ·AC. (1)

3
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Triangles DAB and CDB are also similar isosceles triangles, and therefore

x

BC
=

y

x
=⇒ x2 = y ·BC. (2)

Combining equations (1) and (2) yields the desired result,

R2 + x2 = y (AC +BC) = y2. (3)

This establishes that the chord of 72◦ is


5−

√
5

2
R.
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Supplement to “Historical Reflections on Teaching

Trigonometry”: Ptolemy

David M. Bressoud

March 13, 2010

Claudius Ptolemy of Alexandria (circa 85–165 ce) established the basis for West-
ern, South Asian, and Middle Eastern astronomy that would last until the 16th century.
Ptolemy’s book, known originally as “The Mathematical Treatise,” would come to be
known as “The Great Treatise” or, in Arabic, Kitab al-majisı, which was translated into
Latin as the Almagest . One of the basic challenges that Ptolemy had to face was con-
structing a table of chords corresponding to various arc lengths.

First he had to choose the radius of his circle, recognizing that chord lengths would
need to be scaled when applied to specific circles. He chose a radius of R = 60. Since,
following the practice of the ancient Mesopotamians, each degree was subdivided into 60
minutes and each minute into 60 seconds and so on, the choice of 60 simply makes it easy
to scale, much as choosing a radius of 100 would be convenient for our decimal system. We
will explain his results in terms of an arbitrary radius, R.

As explained in the print article and the supplement on Euclid, Ptolemy started with a
knowledge of the chords (crd) of several arc lengths, especially crd 60◦ = R and crd 72◦ =

(5−
√

5)/2 R. The next step in building his table was to show how to find the chord for
an arc length that is the sum or difference of arc lengths for which the chords are known.
This would enable him to find the chord length for 12◦, and then successively cut that in
half to get down to the chord of 3/4ths of a degree, not quite what he needed, but getting
close. The key to the sum and difference of arc lengths formula is what we now know as
Ptolemy’s Theorem.

Ptolemy’s Theorem. Given any quadrilateral inscribed in a circle, the product of the
diagonals equals the sum of the products of the opposite sides.

Proof. The proof relies on Euclid’s result, Book III, Proposition 21, that if we take any
chord AB of a circle and any third point C on the circle, then the angle ∠ACB depends
only on the chord AB and not on the choice of C. In fact, ∠ACB is exactly half the
length of the arc from A to B, a result that we shall need later. It follows that in Figure 1,

1
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Figure 1: For any quadrilateral inscribed in a circle, the product of the diagonals is equal
to the sum of the products of the opposite sides: AC ·BD = AB · CD +AD ·BC.

∠BAC = ∠BDC. We draw a line segment from B, meeting AC at E, so that ∠ABE =
∠DBC. It follows that triangles ABE and DBC are similar, and, therefore

AE

AB
=
CD

BD
=⇒ BD ·AE = AB · CD.

Again invoking Book III, Proposition 21, we see that ∠ADB = ∠ACB. From the
construction of BE, we also have that ∠ABD = ∠CBE. Now it follows that triangles
ADB and ECB are similar, and, therefore

BD

AD
=
BC

EC
=⇒ BD · EC = AD ·BC.

Combining these results, we obtain

BD ·AC = BD · (AE + EC) = BD ·AE +BD · EC = AB · CD +AD ·BC. (1)

To get the sum and difference of angles formulas, we consider the special case of this
theorem in which one of the diagonals of the quadrilateral is a diameter of the circle of
radius R (see Figure 2 in which α is the arc length from A to D and β is the arc length
from A to B. The diameter is AC = 2R). Note that for any arc length α,

(crd α)2 +
�
crd (180◦ − α)

2
= (2R)2.

If we know the lengths of chords AB and AD, then we know the lengths of all chords
except BD, and Ptolemy’s Theorem can be used to find this chord length (crd):

crd (α) · crd (180◦ − β) + crd (β) · crd (180◦ − α) = 2R crd (α+ β). (2)

2
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Figure 2: In terms of chords (crd), the sum of angles formula for the sine translates as
crd (α) · crd (180◦ − β) + crd (β) · crd (180◦ − α) = 2R crd (α + β), a direct consequence
of Ptolemy’s Theorem.

Similarly, if we know the chord of α and the chord of α + β, Ptolemy’s Theorem enables
us to find the chord of β.

Ptolemy could have derived the half angle formula by setting α = β in equation (2)
and solving for crd α in terms of crd 2α. He chose instead to derive the formula

(crd α)2 = 2R2 −R crd (180◦ − 2α) (3)

as follows (see Figure 3). We draw a diameter AB and place points C and D so that
the arc length from B to C and the arc length from C to D both equal α. We drop a
perpendicular from C to AB, meeting AB at F , and locate the point E so that AD = AE.
Since ∠DAC = ∠CAE, triangles ADC and AEC are congruent. Since CE = CD = BC,
triangles CFE and CFB are congruent, implying that

BF =
1
2
BE =

1
2
(AB −AE) =

1
2
(AB −AD). (4)

Triangles ACB and CFB are similar, so

BC

BF
=
AB

BC
=⇒ BC2 = AB ·BF =

AB

2
(AB −AD). (5)

Using the fact that AB = 2R, BC = crd α, and AD = crd (180◦−2α), we get equation (3).
The results obtained so far enabled Ptolemy to find the exact value of the chord of any

arc of length 3 ·2k degrees where k can be any integer. In the 12th century, this fact would
lead Al-Samawal to argue that the circle should be divided into 480◦ rather than 360◦,

3
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Figure 3: In terms of chords, the half angle formula can be expressed as (crd α)2 =
2R2 −R crd (180◦ − 2α).

because it is possible to find an exact value for the chord of 1/480th of the circumference
of a circle. He seems to have convinced no one to change the definition of a degree.

Although Ptolemy could not find an exact value for the chord of 1◦, he was able to
create a table of chord lengths for all arc lengths from 0◦ to 90◦ in increments of half a
degree and to within an accuracy of one part in 216,000 = 603. The following proposition
enabled him to calculate crd 1◦ and crd 30 to the desired accuracy.

Proposition. If 0 < α < β < 180◦ are arc lengths, then

crd β

crd α
<
β

α
. (6)

In particular, this implies that

2
3

crd 1◦ 30 < crd 1◦ <
4
3

crd 45,

bounds that produce the desired accuracy. In fact, these bounds differ by less than one
part in 2,600,000.

Proof. See Figures 4 and 5. Let α denote the arc length from A to B and β the arc length
from B to C. Draw the line segment BD that bisects ∠ABC, and mark E as the point of
intersection of AC and BD.

We will need the fact that, since ∠ABE = ∠EBC,

AB

AE
=
BC

CE
. (7)
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Figure 4: If ABC is any triangle and BE bisects the interior angle at B, then the ratio of

AB to AE is equal to the ratio of BC to CE:
AB

AE
=
BC

CE
.

We can see why this is true if we add a point K on the segment BD so that CE = CK.
Since triangle ECK is isosceles, ∠EKC = ∠KEC = ∠AEB, and therefore triangles ABE
and CBK are similar. From this it follows that

AB

AE
=
BC

CK
=
BC

CE
.

We draw a perpendicular from D to AC, meeting AC at F (see Figure 5). Since the
arc from A to D is equal to the arc from D to C, F is at the midpoint of AC. We draw
the arc of the circle centered at D with radius DE and mark its intersection with AD as
G and its intersection with the extension of DF as H.

Since triangles EFD and AED have the same heights, the ratio of their areas is equal
to the ratio of their bases, EF/AE. The ratio of the areas of these triangles is less than
the ratio of the areas of the sectors EHD to GED, and the ratio of the sectors is equal to
the ratio of the angles at D. We see that

EF

AE
=

area of ∆EFD
area of ∆AED

<
area of sector EHD
area of sector GED

=
∠EDF
∠ADE

. (8)

We observe that
EC = EF + FC = EF +AF = 2EF +AE,

and, similarly, ∠EDC = 2∠EDF + ∠ADE. Now we put it all together,

crd β

crd α
=
BC

AB
=
EC

AE
= 2

EF

AE
+
AE

AE
(9)

< 2
∠EDF
∠ADE

+
∠ADE
∠ADE

=
∠EDC
∠ADE

=
β/2
α/2

=
β

α
.

5



Vol. 104, No. 2 • September 2010 | Mathematics Teacher

 

α 

β 

A 

B 

C 

D 

E  F 

G 

H 

Figure 5: For ratios larger than 1, the ratio of the chord lengths is strictly less than the

ratio of the corresponding arc lengths:
crd β

crd α
<
β

α
.

Now that Ptolemy knew the chord of 1
2

◦ = 30 and had exact values at each multiple
of 1◦ 30, he could find very accurate values for chords at any multiple of half a degree.
Of course, as we saw in the problem of locating the position of the earth, we need finer
values than this. In his table, Ptolemy reported the value of one sixtieth of the difference
between each pair of successive chord values. With this information, anyone using his table
could employ linear interpolation to find the intermediate chord values for arc lengths in
increments of half a minute.
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